Researchers stimulate areas vital to consciousness in monkeys’ brains — and it wakes them up

Source: Cell Press
Date: 02/12/2020
Link to original
Image of article

One of the central questions in neuroscience is clarifying where in the brain consciousness, which is the ability to experience internal and external sensations, arises. On February 12 in the journal Neuron, researchers report that a specific area in the brain, the central lateral thalamus, appears to play a key role. In monkeys under anesthesia, stimulating this area was enough to wake the animals and elicit normal waking behaviors.

Previous studies, including EEG and fMRI studies in humans, had suggested that certain areas of the brain, including the parietal cortex and the thalamus, appear to be involved in consciousness. “We decided to go beyond the classical approach of recording from one area at a time,” says senior author Yuri Saalmann, an assistant professor at the University of Wisconsin, Madison. “We recorded from multiple areas at the same time to see how the entire network behaves.”

The investigators used macaques as their animal model. By studying awake, sleeping, and anesthetized animals, they were able to narrow down the region of the brain involved in consciousness to a much more specific area than other studies have done. They were also able to rule out some areas that had been proposed in previous neurocorrelative studies of consciousness. They ultimately focused on the central lateral thalamus, which is found deep in the forebrain.

Once the researchers pinpointed this area, they tested what happened when the central lateral thalamus was activated while the animals were under anesthesia, stimulating the region with a frequency of 50 Hz. “We found that when we stimulated this tiny little brain area, we could wake the animals up and reinstate all the neural activity that you’d normally see in the cortex during wakefulness,” Saalmann says. “They acted just as they would if they were awake. When we switched off the stimulation, the animals went straight back to being unconscious.”

One test of wakefulness was their neural responses to oddball auditory stimulation–a series of beeps interspersed with other random sounds. The animals responded in the same way that awake animals would respond.

“Our electrodes have a very different design,” Saalmann says. “They are much more tailored to the shape of the structure in the brain we want to stimulate. They also more closely mimic the electrical activity that’s seen in a healthy, normal system.”

“The overriding motivation of this research is to help people with disorders of consciousness to live better lives,” says first author Michelle Redinbaugh, a graduate student in the Department of Psychology at the University of Wisconsin, Madison. “We have to start by understanding the minimum mechanism that is necessary or sufficient for consciousness, so that the correct part of the brain can be targeted clinically.”

“There are many exciting implications for this work,” she says. “It’s possible we may be able to use these kinds of deep-brain stimulating electrodes to bring people out of comas. Our findings may also be useful for developing new ways to monitor patients under clinical anesthesia, to make sure they are safely unconscious.”

###

This study was funded by the National Institutes of Health, a United States-Israel Binational Science Foundation, and a Wisconsin National Primate Research Center pilot grant.

Neuron, Redinbaugh et al.: “Thalamus modulates consciousness via layer-specific control of cortex

Artificial sweeteners combined with carbs may be more harmful than those sweeteners alone

Source: Cell Press
Date: 03/03/2020
Link to original
Image of article

The influence of artificial sweeteners on the brain and ultimately metabolism has been hotly debated in recent years. Some studies have found adverse effects on blood sugar and insulin levels, while others have not. In a study publishing March 3 in the journal Cell Metabolism, researchers say the discrepancies in these studies may be due to how the sweeteners are consumed–or, more specifically, what they are consumed with.

Investigators report that the artificial sweetener sucralose seems to have no negative impact on its own, but when it is consumed with a carbohydrate, it induces deleterious changes in insulin sensitivity and decreases the brain’s response to sweet taste as measured by fMRI.

“When we set out to do this study, the question that was driving us was whether or not repeated consumption of an artificial sweetener would lead to a degrading of the predictive ability of sweet taste,” says senior author Dana Small, a neuroscientist who is a professor of psychiatry and the director of the Modern Diet and Physiology Research Center at Yale University. “This would be important because sweet-taste perception might lose the ability to regulate metabolic responses that prepare the body for metabolizing glucose or carbohydrates in general.”

The trial enrolled 45 volunteers between the ages of 20 and 45 who didn’t normally consume low-calorie sweeteners. All of them were of healthy weight and had no metabolic dysfunction. Other than consuming seven beverages in the lab over a two-week period, they didn’t make any changes to their diet or other habits. The investigators conducted studies on the volunteers before, during, and after the testing period, including performing fMRI scans to look at changes in the brain in response to sweet tastes, as well as other tastes like salty and sour. They also measured taste perception and did an oral glucose tolerance test to look at insulin sensitivity.

The sweeteners were consumed as fruit-flavored beverages with added sucralose, or with table sugar for comparison. In what was intended to be a control group: some of the volunteers had the carbohydrate maltodextrin added to their sucralose drinks. The researchers chose maltodextrin, a non-sweet carbohydrate, to control for the calories of sugar without adding more sweet taste to the beverage. Surprisingly, it was this control group that showed changes in the brain’s response to sweet taste and the body’s insulin sensitivity and glucose metabolism. Given the surprising result, the researchers added a second control group, in which the participants drank beverages with maltodextrin alone. They found no evidence that consuming maltodextrin-containing beverages over the seven-day period alters insulin sensitivity and glucose metabolism.

“Perhaps the effect resulted from the gut generating inaccurate messages to send to the brain about the number of calories present,” Small says. “The gut would be sensitive to the sucralose and the maltodextrin and signal that twice as many calories are available than are actually present. Over time, these incorrect messages could produce negative effects by altering the way the brain and body respond to sweet taste.”

She notes that a subset of the previous studies of artificial sweeteners have involved mixing the sweeteners with plain yogurt, adding carbohydrates from the yogurt and leading to the same effects seen here as with the maltodextrin. This could explain why previous findings about artificial sweeteners have been in conflict with each other.

Small says that her team began doing similar studies in adolescents, but they ended the trial early when they saw that two of the kids who were getting the sucralose-carbohydrate combination had their fasting insulin skyrocket.

“Previous studies in rats have shown that changes in the ability to use sweet taste to guide behavior can lead to metabolic dysfunction and weight gain over time. We think this is due to the consumption of artificial sweeteners with energy,” she notes.

Future studies will look at whether other artificial sweeteners, as well as more natural sweeteners like stevia, have the same effects as sucralose. Small expects that many of them will. “It’s hard to say, because we still don’t fully understand the mechanism,” she concludes. “That’s also something we hope to study further, especially in mice.”

###

This work was supported by the National Institutes of Health.

Cell Metabolism, Dalenberg et al.: “Short-term consumption of sucralose with, but not without, carbohydrate impairs neural and metabolic sensitivity to sugar” https://www.cell.com/cell-metabolism/fulltext/S1550-4131(20)30057-7

Brain mapping study suggests motor regions for the hand also connect to the entire body

Source: Cell Press
Date: 03/26/2020
Link to original
Image of article

Mapping different parts of the brain and determining how they correspond to thoughts, actions, and other neural functions is a central area of inquiry in neuroscience, but while previous studies using fMRI scans and EEG have allowed researchers to rough out brain areas connected with different types of neural activities, they have not allowed for mapping the activity of individual neurons.

Now in a paper publishing March 26 in the journal Cell, investigators report that they have used microelectrode arrays implanted in the brains of two people to map out motor functions down to the level of the single nerve cell. The study revealed that an area believed to control only one body part actually operates across a wide range of motor functions. It also demonstrated how different neurons coordinate with each other.

“This research shows for the first time that an area of the brain previously thought to be connected only to the arm and hand has information about the entire body,” says first author Frank Willett, a postdoctoral fellow in the Neural Prosthetics Translational Laboratory at Stanford University and the Howard Hughes Medical Institute. “We also found that this area has a shared neural code that links all the body parts together.”

The study, a collaboration between neuroscientists at Stanford and Brown University, is part of BrainGate2, a multisite pilot clinical trial focused on developing and testing medical devices to restore communication and independence in people affected by neurological conditions like paralysis and locked-in syndrome. A major focus of the Stanford team has been developing ways to restore the ability of these people to communicate through brain-computer interfaces (BCIs).

The new study involved two participants who have chronic tetraplegia–partial or total loss of function in all four limbs. One of them has a high-level spinal cord injury and the other has amyotrophic lateral sclerosis. Both have electrodes implanted in the so-called hand knob area of the motor cortex of their brains. This area–named in part for its knoblike shape–was previously thought to control movement in the hands and arms only.

The investigators used the electrodes to measure the action potentials in single neurons when the participants were asked to attempt to do certain tasks–for example, lifting a finger or turning an ankle. The researchers looked at how the microarrays in the brain were activated. They were surprised to find that the hand knob area was activated not only by movements in the hand and arm, but also in the leg, face, and other parts of the body.

“Another thing we looked at in this study was matching movements of the arms and legs,” Willett says, “for example, moving your wrist up or moving your ankle up. We would have expected the resulting patterns of neural activity in motor cortex to be different, because they are a completely different set of muscles. We actually found that they were much more similar than we would have expected.” These findings reveal an unexpected link between all four limbs in motor cortex that might help the brain to transfer skills learned with one limb to another one.

Willett says that the new findings have important implications for the development of BCIs to help people who are paralyzed to move again. “We used to think that to control different parts of the body, we would need to put implants in many areas spread out across the brain,” he notes. “It’s exciting, because now we can explore controlling movements throughout the whole body with an implant in only one area.”

One important potential application for BCIs is allowing people who are paralyzed or have locked-in syndrome to communicate by controlling a computer mouse or other device. “It may be that we can connect different body movements to different types of computer clicks,” Willett says. “We hope we can leverage these different signals more accurately to enable someone who can’t talk to use a computer, since neural signals from different body parts are easier for a BCI to tease apart than those from the arm or hand alone.”

###

This work was supported by the Office of Research and Development, Rehabilitation R and D Service, Department of Veterans Affairs, the Executive Committee on Research of Massachusetts General Hospital, NIDCD, NINDS, Larry and Pamela Garlick, Samuel and Betsy Reeves, the Wu Tsai Neuroscience Institute at Stanford, the Simons Foundation Collaboration on the Global Brain, the Office of Naval Research, and the Howard Hughes Medical Institute.

Cell, Willett et al. “Hand Knob Area of Premotor Cortex Represents the Whole Body in a Compositional Way” https://www.cell.com/cell/fulltext/S0092-8674(20)30220-8

Revisiting the potential of using psychedelic drugs in psychiatry

Source: Cell Press
Date: 04/02/2020
Link to original
Image of article

Before they were banned about a half century ago, psychedelic drugs like LSD and psilocybin showed promise for treating conditions including alcoholism and some psychiatric disorders. In a commentary publishing April 2 in the journal Cell, part of a special issue on medicine, researchers say it’s time for regulators, scientists, and the public to “revisit drugs that were once used but fell out of use because of political machinations, especially the war on drugs.”

Brain imaging over the past 20 years has taught scientists a lot about how these drugs act on different areas of the brain, says first author David Nutt (@ProfDavidNutt), a professor and neuropharmacologist at Imperial College London. “There’s mechanistic evidence in humans of how these drugs affect the brain,” he says. “By back-translating from humans to rodent models, we can see how these drugs produce the powerful neuroplastic changes that explain the long-term alterations we see in humans.”

Nutt is a prominent proponent of conducting controlled trials to examine the potential benefits of psychedelics. He is also chair of the scientific advisory board for COMPASS Pathways, a for-profit company that is leading clinical research to test the safety and efficacy of psilocybin-assisted therapy for treatment-resistant depression. The treatment has been granted breakthrough therapy designation from the US Food and Drug Administration. The group also plans to launch a similar study for obsessive-compulsive disorder.

In the Cell commentary, Nutt and his colleagues write about the “psychedelic revolution in psychiatry.” They explore specific questions in research, including what is known about the receptors in the brain affected by these drugs and how stimulating them might alter mental health. They also address what’s been learned so far about so-called microdosing, the value of the psychedelic “trip,” and what researchers know about why the effects of these trips are so long-lasting.

Brain imaging has shown that the activity of psychedelic drugs is mediated through a receptor in brain cells called 5-HT2A. There is a high density of these receptors in the “thinking parts of the brain,” Nutt explains.

The key part of the brain that appears to be disrupted by the use of psychedelics is the default mode network. This area is active during thought processes like daydreaming, recalling memories, and thinking about the future–when the mind is wandering, essentially. It’s also an area that is overactive in people with disorders like depression and anxiety. Psychedelics appear to have long-term effects on the brain by activating 5-HT2A receptors in this part of the brain. More research is needed to understand why these effects last so long, both from a psychological perspective and in terms of altered brain functioning and anatomy.

The authors note the challenges in obtaining materials and funding for this type of research. “Before LSD was banned, the US NIH funded over 130 studies exploring its clinical utility,” they write. “Since the ban, it has funded none.”

Nutt highlights the early potential of psychedelic drugs for treating alcoholism, which the World Health Organization estimates to be the cause of about one in 20 deaths worldwide every year. “If we changed the regulations, we would have an explosion in this kind of research,” Nutt says. “An enormous opportunity has been lost, and we want to resurrect it. It’s an outrageous insult to humanity that these drugs were abandoned for research just to stop people from having fun with them. The sooner we get these drugs into proper clinical evaluation, the sooner we will know how best to use them and be able to save lives.”

###

The Beckley Foundation and the Alexander Mosley Charitable Trust supported much of the imaging and clinical work respectively. This research is also funded by the UK Medical Research Council. David Nutt is a scientific advisor to COMPASS Pathways. Co-author Robin Carhart-Harris is a scientific advisor to COMPASS Pathways and USONA.

Cell, Nutt et al. “Psychedelic psychiatry’s brave new world” https://www.cell.com/cell/fulltext/S0092-8674(20)30282-8

Researchers restore injured man’s sense of touch using brain-computer interface technology

Source: Cell Press
Date: 04/23/2020
Link to original
Image of article

While we might often take our sense of touch for granted, for researchers developing technologies to restore limb function in people paralyzed due to spinal cord injury or disease, re-establishing the sense of touch is an essential part of the process. And on April 23 in the journal Cell, a team of researchers at Battelle and the Ohio State University Wexner Medical Center report that they have been able to restore sensation to the hand of a research participant with a severe spinal cord injury using a brain-computer interface (BCI) system. The technology harnesses neural signals that are so miniscule they can’t be perceived and enhances them via artificial sensory feedback sent back to the participant, resulting in greatly enriched motor function.

“We’re taking subperceptual touch events and boosting them into conscious perception,” says first author Patrick Ganzer, a principal research scientist at Battelle. “When we did this, we saw several functional improvements. It was a big eureka moment when we first restored the participant’s sense of touch.”

The participant in this study is Ian Burkhart, a 28-year-old man who suffered a spinal cord injury during a diving accident in 2010. Since 2014, Burkhart has been working with investigators on a project called NeuroLife that aims to restore function to his right arm. The device they have developed works through a system of electrodes on his skin and a small computer chip implanted in his motor cortex. This setup, which uses wires to route movement signals from the brain to the muscles, bypassing his spinal cord injury, gives Burkhart enough control over his arm and hand to lift a coffee mug, swipe a credit card, and play Guitar Hero.

“Until now, at times Ian has felt like his hand was foreign due to lack of sensory feedback,” Ganzer says. “He also has trouble with controlling his hand unless he is watching his movements closely. This requires a lot of concentration and makes simple multitasking like drinking a soda while watching TV almost impossible.”

The investigators found that although Burkhart had almost no sensation in his hand, when they stimulated his skin, a neural signal–so small it was his brain was unable to perceive it–was still getting to his brain. Ganzer explains that even in people like Burkhart who have what is considered a “clinically complete” spinal cord injury, there are almost always a few wisps of nerve fiber that remain intact. The Cell paper explains how they were able to boost these signals to the level where the brain would respond.

The subperceptual touch signals were artificially sent back to Burkhart using haptic feedback. Common examples of haptic feedback are the vibration from a mobile phone or game controller that lets the user feel that something is working. The new system allows the subperceptual touch signals coming from Burkhart’s skin to travel back to his brain through artificial haptic feedback that he can perceive.

The advances in the BCI system led to three important improvements. They enable Burkhart to reliably detect something by touch alone: in the future, this may be used to find and pick up an object without being able to see it. The system also is the first BCI that allows for restoration of movement and touch at once, and this ability to experience enhanced touch during movement gives him a greater sense of control and lets him to do things more quickly. Finally, these improvements allow the BCI system to sense how much pressure to use when handling an object or picking something up–for example, using a light touch when picking up a fragile object like a Styrofoam cup but a firmer grip when picking up something heavy.

The investigators’ long-term goal is to develop a BCI system that works as well in the home as it does in the laboratory. They are working on creating a next-generation sleeve containing the required electrodes and sensors that could be easily put on and taken off. They also aim to develop a system that can be controlled with a tablet rather than a computer, making it smaller and more portable.

“It has been amazing to see the possibilities of sensory information coming from a device that was originally created to only allow me to control my hand in a one-way direction,” Burkhart says.

###

This study was supported by Battelle Memorial Institute and The Ohio State University Center for Neuromodulation.

Cell, Ganzer et al.: “Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface” https://www.cell.com/cell/fulltext/S0092-8674(20)30347-0

Bioethicist calls out unproven and unlicensed ‘stem cell treatments’ for COVID-19

Source: Cell Press
Date: 05/07/2020
Link to original
Image of article

As the COVID-19 pandemic enters its third month, businesses in the United States are marketing unlicensed and unproven stem-cell-based “therapies” and exosome products that claim to prevent or treat the disease. In Cell Stem Cell on May 5, bioethicist Leigh Turner describes how these companies are “seizing the pandemic as an opportunity to profit from hope and desperation.”

“I’m concerned that individuals purchasing these supposed ‘therapies’ for COVID-19 will be scammed,” says Turner (@LeighGTurner), an associate professor at the University of Minnesota Center for Bioethics. “I’m also worried that they’ll be injured as a result of being given products that haven’t been adequately tested, or that they’ll forgo measures like social distancing because they’ve paid for a product that they think will protect them from being infected or getting sick.”

Many stem cell clinics have a history of selling unproven and unlicensed interventions for injuries and illnesses ranging from Alzheimer’s disease to pulmonary disorders to spinal cord injuries. Since the COVID-19 pandemic began, some have added claims about “immune-boosting” therapies for treating COVID-19 and acute respiratory distress syndrome (ARDS) caused by infection with SARS CoV-2. These companies advertise stem cell interventions and exosome products derived from such sources as umbilical cords and amniotic fluid. Turner says uncritical news media accounts have compounded some of these claims by reporting on preliminary evidence and case studies.

Yet rigorous clinical trials on these stem cell products have not yet been done. “Randomized controlled trials are needed to establish whether particular stem cell products are safe and efficacious in the treatment of COVID-19-related ARDS,” he explains.

Turner has studied the US direct-to-consumer marketplace for stem cell clinics for nearly a decade. “These businesses have a long history of claiming to treat diseases and injuries for which evidence-based therapies do not yet exist,” he says. To find out what these businesses were promoting, he did Google searches on a variety of terms related to stem cell treatments, COVID-19, and ARDS. He also searched YouTube for promotional videos made by these clinics.

“I found more examples of businesses peddling stem cell products for COVID-19 than I had space to describe in detail,” he notes. “I wasn’t surprised at how quickly some of these companies began making these claims. For them, the COVID-19 pandemic is an opportunity to generate a new revenue stream.”

In the paper, Turner also discusses the role of medical organizations, noting that while most are doing a good job of criticizing deceptive advertising, some have been promoting these interventions despite the lack of scientific evidence supporting their use.

“I want members of the public to know that some companies are trying to take advantage of them by selling supposed treatments that aren’t backed by credible evidence,” Turner concludes. “I’m also hoping that this paper will catch the attention of regulatory bodies like the Food and Drug Administration (FDA) and the Federal Trade Commission (FTC), as well as state medical boards and state attorney general offices. The FDA and FTC have issued letters to some businesses, but additional regulatory action is needed.”

###

Cell Stem Cell, Turner, L.: “Preying on Public Fears and Anxieties in a Pandemic: Businesses Selling Unproven and Unlicensed ‘Stem Cell Treatments’ for COVID-19” https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(20)30201-0

Team shares blueprint for adapting academic research center to SARS-CoV-2 testing lab

Source: Cell Press
Date: 05/12/2020
Link to original
Image of article

During the COVID-19 pandemic, as demand for SARS-CoV2 diagnostic testing has far outweighed the supply, academic research scientists have begun converting their labs to testing facilities. In a paper published May 10 in Med, a team of investigators from Boston University School of Medicine and Boston Medical Center (BMC) outline how they adapted their lab to test patient samples for SARS-CoV2, and they provide a blueprint for other labs that want to do the same thing.

“As with other basic biology labs across the country, we were forced to shutter operations due to the pandemic,” says senior author George Murphy (@DrGJMurphy), an Associate Professor of Medicine in the Division of Hematology and Oncology. “We saw that our friends and colleagues at Boston Medical Center were going into battle on the front lines of this pandemic, but that they were having to wait seven to 10 days for results from state and commercial laboratory facilities. This was unacceptable to us, and we decided we needed to take action.”

Murphy is normally co-director of the Boston University and Boston Medical Center (BMC) Center for Regenerative Medicine (CReM) and focuses on stem cell research. As stem cell and molecular biologists, he and the members of the lab had extensive experience developing and running the type of quantitative, real-time reverse transcriptase polymerase chain reaction (qRT-PCR) assay that was needed to detect the presence of viral RNA in patient samples.

The bigger challenge was adapting their lab to the strict policies required to run a Clinical Laboratory Improvement Amendments (CLIA)-certified, College of American Pathologists (CAP)-accredited diagnostic lab. The team requested and received emergency permission from the FDA to repurpose the lab, and they began operating in less than a week. As of April 20, 2020, they had already tested more than 3,000 samples, with a sample turnaround time that’s under 24 hours. Nearly 45% of those tests were positive, a large number due in part to the high-risk population served by BMC, the largest safety net hospital in New England.

“For about a month or so, we were the only game in town,” Murphy notes. “Results from samples that were sent out to large commercial labs were taking up to a week, but even a wait-time of 24 hours delays the ability to make decisions about whether or not someone needs to be isolated and whether precious PPE [personal protective equipment] should be used.”

The team developed a test that could be done with technologies and reagents that are likely to remain available. The test was also designed with the ability to use different reagents at each step of the process. “Our ‘home-brew’ assay is extremely flexible, allowing us to slot in various reagents at multiple points and eliminating potential supply-chain issues,” Murphy says.

He doesn’t expect the need for testing to decline any time soon. “Although we have gotten through the early stages of this pandemic, which involved the testing of critically ill and symptomatic patients during a time of acute need, everyone is going to soon need to transition into asymptomatic and surveillance testing. It may be extremely difficult for large commercial labs to contend with the enormous number of samples this will entail,” Murphy says. “We decided to share what we did so that other institutions can implement their own in-house testing.”

The team is also looking at expanding to other kinds of assays, including saliva-based tests.

Murphy credits his colleagues and coauthors, including laboratorian Chris Andry, pathologist Nancy Miller and bioinformaticist Taylor Matte, for putting together this testing program so quickly. “We think it’s important for the public to see something positive in these very challenging times,” he concludes. “This project was a wonderful example of collaboration and teamwork in which scientists, clinicians, diagnostic laboratory technicians, and administrators came together to solve a seemingly insurmountable problem.”

###

This work was funded by the Boston University School of Medicine and Boston Medical Center.

Med, Vanuytsel, Mithal, and Giadone et al. “Rapid Implementation of a SARS-CoV-2 Diagnostic qRT-PCR Test with Emergency Use Authorization at a Large Academic Safety-Net Hospital” https://www.cell.com/med/fulltext/S2666-6340(20)30003-9

Dynamic stimulation of the visual cortex allows blind and sighted people to ‘see’ shapes

Source: Cell Press
Date: 05/14/2020
Link to original
Image of article

For most adults who lose their vision, blindness results from damage to the eyes or optic nerve while the brain remains intact. For decades, researchers have proposed developing a device that could restore sight by bypassing damaged eyes and delivering visual information from a camera directly to the brain. In a paper publishing in the journal Cell on May 14, a team of investigators at Baylor College of Medicine in Houston report that they are one step closer to this goal. They describe an approach in which implanted electrodes are stimulated in a dynamic sequence, essentially “tracing” shapes on the surface of the visual cortex that participants were able to “see.”

“When we used electrical stimulation to dynamically trace letters directly on patients’ brains, they were able to ‘see’ the intended letter shapes and could correctly identify different letters,” senior author Daniel Yoshor says. “They described seeing glowing spots or lines forming the letters, like skywriting.”

Previous attempts to stimulate the visual cortex have been less successful. Earlier methods treated each electrode like a pixel in a visual display, stimulating many of them at the same time. Participants could detect spots of light but found it hard to discern visual objects or forms. “Rather than trying to build shapes from multiple spots of light, we traced outlines,” says first author Michael Beauchamp. “Our inspiration for this was the idea of tracing a letter in the palm of someone’s hand.”

The investigators tested the approach in four sighted people who had electrodes implanted in their brains to monitor epilepsy and two blind people who had electrodes implanted over their visual cortex as part of a study of a visual cortical prosthetic device. Stimulation of multiple electrodes in sequences produced perceptions of shapes that subjects were able to correctly identify as specific letters.

The approach, the researchers say, demonstrates that it could be possible for blind people to regain the ability to detect and recognize visual forms by using technology that inputs visual information directly into the brain, should they wish to. The researchers note, however, that several obstacles must be overcome before this technology could be implemented in clinical practice.

“The primary visual cortex, where the electrodes were implanted, contains half a billion neurons. In this study we stimulated only a small fraction of these neurons with a handful of electrodes,” Beauchamp says. “An important next step will be to work with neuroengineers to develop electrode arrays with thousands of electrodes, allowing us to stimulate more precisely. Together with new hardware, improved stimulation algorithms will help realize the dream of delivering useful visual information to blind people.”

###

This work was supported by the National Institutes of Health.

Cell, Beauchamp et al.: “Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans” https://www.cell.com/cell/fulltext/S0092-8674(20)30496-7

How plants sound the alarm about danger

Source: Salk Institute
Date: 03/13/2020
Link to original
Image of article

Team led by Salk scientists provides a detailed picture of how plant hormones communicate through gene regulation

LA JOLLA—Just like humans and other animals, plants have hormones. One role of plant hormones is to perceive trouble—whether an insect attack, drought or intense heat or cold—and then signal to the rest of the plant to respond.

A multicenter team led by current and former investigators from the Salk Institute is reporting new details about how plants respond to a hormone called jasmonic acid, or jasmonate. The findings, which were published in Nature Plants on March 13, 2020, reveal a complex communication network. This knowledge could help researchers, such as members of Salk’s Harnessing Plants Initiative, develop crops that are hardier and more able to withstand assault, especially in an era of rapid climate change.

“This research gives us a really detailed picture of how this hormone, jasmonic acid, acts at many different levels,” says Professor Joseph Ecker, co-corresponding author and Howard Hughes Medical Institute investigator. “It enables us to understand how environmental information and developmental information is processed, and how it ensures proper growth and development.”

The plant used in the study was Arabidopsis thaliana, a small flowering plant in the mustard family. Because its genome has been well characterized, this plant is a popular model system. Scientists can take what they learn in A. thaliana and apply it to other plants, including those grown for food. Jasmonic acid is found not only in A. thaliana but throughout the plant kingdom.

“Jasmonic acid is particularly important for a plant’s defense response against fungi and insects,” says co-first author Mark Zander, a staff researcher in Ecker’s lab. “We wanted to precisely understand what happens after jasmonic acid is perceived by the plant. Which genes are activated and deactivated, which proteins are produced and which factors are in control of these well-orchestrated cellular processes?”

The researchers started with plant seeds grown in petri dishes. They kept the seeds in the dark for three days to mimic the first few days of a seed’s life, when it is still underground. “We know this growth stage is super important,” says co-first author and co-corresponding author Mathew Lewsey, an associate professor at La Trobe University in Melbourne, Australia, who previously worked in Ecker’s lab. The first few days in the soil are a challenging time for seedlings, as they face attacks from insects and fungi. “If your seeds don’t germinate and successfully emerge from the soil, then you will have no crop,” Lewsey adds.

After three days, the plants were exposed to jasmonic acid. The researchers then extracted the DNA and proteins from the plant cells and employed specific antibodies against their proteins of interest to capture the exact genomic location of these regulators. By using various computational approaches, the team was then able to identify genes that are important for the plant’s response to jasmonic acid and, moreover, for the cellular cross-communication with other plant hormone pathways.

Two genes that rose to the top in their degree of importance across the system were MYC2 and MYC3. These genes code for proteins that are transcription factors, which means that they regulate the activity of many other genes—or thousands of other genes in this case.

“In the past, the MYC genes and other transcription factors have been studied in a very linear fashion,” Lewsey explains. “Scientists look at how one gene is connected to the next gene, and the next one, and so on. This method is inherently slow because there are a lot of genes and lots of connections. What we’ve done here is to create a framework by which we can analyze many genes at once.”

“By deciphering all of these gene networks and subnetworks, it helps us to understand the architecture of the whole system,” Zander says. “We now have this very comprehensive picture of which genes are turned on and off during a plant’s defense response. With the availability of CRISPR gene editing, these kinds of details can be useful for breeding crops that are able to better withstand attacks from pests.”

Another noteworthy aspect of this work is that all of the data from the research has been made available on Salk’s website. Researchers can use the site to search for more information about genes they study and find ways to target them.

Other authors of the study included Anna Bartlett, J. Paola Saldierna Guzmán, Elizabeth Hann, Amber E. Langford, Bruce Jow, Joseph R. Nery and Huaming Chen of Salk; Lingling Yin of La Trobe University; Natalie M. Clark and Justin W. Walley of Iowa State University; Aaron Wise and Ziv Bar-Joseph of Carnegie Mellon University; and Roberto Solano of Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas in Madrid, Spain.

The work was funded by a Deutsche Forschungsgemeinschaft research fellowship and an EU Marie Curie FP7 International Outgoing Fellowship, and by grants from the National Science Foundation; the National Institutes of Health (R01GM120316); the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy (DE-FG02-04ER15517); the Gordon and Betty Moore Foundation (GBMF3034); the Ministry of Economy (BIO2016-77216-R), Industry and Competitiveness of Spain; the ISU Plant Sciences Institute; and the Howard Hughes Medical Institute.

Quiz Yourself to Grow What You Know About Regeneration

Source: National Institute of General Medical Sciences - Biomedical Beat Blog
Date: 01/29/2020
Link to original
Image of article

Regeneration is the natural process of replacing or restoring cells that have been lost or damaged due to injury or disease. A few animals can regrow entire organs or other body parts, but most have limited abilities to regenerate.

Scientists in the field of regenerative medicine study how some animals are able to rebuild lost body parts. By better understanding these processes and learning how to control them, researchers hope to develop new methods to treat injuries and diseases in people.

Take this quiz to test what you know about regeneration and regenerative medicine. Then check out our Regeneration fact sheet and the regeneration issue of Pathways , a teaching resource produced in collaboration with Scholastic.

1.) Which of these animals don’t have the ability to regenerate?

  • a.) Zebrafish
  • b.) Fruit flies
  • c.) Sea urchins
  • d.) Axolotls (Mexican salamanders)

2.) The human body can regenerate:

  • a.) Tooth enamel
  • b.) Toes
  • c.) Heart valves
  • d.) Bone tissue

3.) True or false: A planarian flatworm can regrow its entire body from one tiny piece of tissue.

  • a.) True
  • b.) False

4.) True or false: The same genes that some animals use to undergo extensive regeneration are also found in humans.

  • a.) True
  • b.) False

5.) Which of these is an achievement of regeneration research involving stem cells?

  • a.) A treatment for burn wounds that uses a spray gun to apply stem cells
  • b.) Creating a device that emits a light ray of stem cells and is passed through the chest to treat asthma
  • c.) A medication that completely stops a person from aging
  • d.) Cloning an entire human being