Examining ethical issues surrounding wearable brain devices marketed to consumers

Source: Cell Press
Date: 05/22/2019
Link to original
Image of article

Wearable brain devices are now being marketed directly to consumers and often claim to confer benefits like boosting memory and modulating symptoms of depression. But despite the size of this market, little is known about the validity of these claims and, substantiated or not, the related ethical consequences or repercussions.

In a perspective being published in the journal Neuron on May 22, a team of neuroethicists looked at the range of products being sold online and questioned the claims made by companies about these products. They identified 41 devices for sale, including 22 recording devices and 19 stimulating devices. The goal of the project was to look at issues of transparency, rights, and responsibility in the way these products are marketed and sold.

“When it comes to biotechnology, and in particular brain technology, there is a heightened level of responsibility around ethical innovation,” says senior author Judy Illes, a professor of Neurology and Canada Research Chair in Neuroethics at the University of British Columbia (@NeuroethicsUBC). “The great news is that it doesn’t cost a lot of money to innovate ethically: it just takes some more thought, good messaging, and consideration of potential consequences. There are many experts who are poised to help this industry in a practical, solution-oriented way. It’s worth it for companies to take the time to do it right.”

The authors established four general categories for the claims about wearable brain devices:

  • Wellness: benefits like stress reduction, improved sleep, and weight loss
  • Enhancement: including improved cognition and productivity and greater physical performance
  • Practical applications: uses like research and enhanced worker safety
  • Health: improvement of conditions such as those affecting behavior and attention, as well as certain neurodegenerative diseases

Despite wide-ranging claims, there have been few studies evaluating the scientific validity of any of them. The authors didn’t seek to evaluate the products’ effectiveness in this review. Instead, they looked at how manufacturers could communicate the potential outcomes from using these devices–both positive and negative–in a more ethically responsible way.

The neuroscience wearables market has parallels to other direct-to-consumer medical products. This includes herbs and supplements, home genetic testing kits, so-called wellness CT scans, and “keepsake” 3D ultrasounds offered to pregnant women. By marketing them for wellness or recreation rather than health, companies that sell these products and services are able to avoid regulatory oversight from agencies such as the Food and Drug Administration.

“We have concerns, however, that people could turn to these devices rather than seeking medical help when they might actually need it,” Illes notes. “They may also choose these devices over conventional medical treatments that they have been offered. There are a lot of potential effects that we don’t know much about.”

Symptoms and side effects that could result from use of these products include redness or other irritation where the devices contact the skin, headaches, pain, tingling, and nausea. Some of the products mention the possibility of side effects in their packaging, but there haven’t been any studies looking at how common or serious the effects may be.

The researchers note that warning labels advising consumers about risk are largely lacking. “I would consider this an important, responsible message to consumers, but as far as I know, few of these products have it,” Illes says.

Illes and her team believe that because some of these products are marketed for children, who may be particularly vulnerable to their effects on the brain, extra caution is needed. “Their bodies and brains are still developing,” she says. “What are the claims for these products and how do we manage and appreciate them both for their potential benefits and possible risks?” Additional caution may also be needed for use of neuroscience wearables in the elderly, another population that may have a higher risk of potential harm.

There are also issues related to neuroscience wearable products that record brain activity. “How are these data used, and who has access to them?” Illes asks. “These are things we don’t know. We should be asking these questions.”

###

This work was supported by Technical Safety BC, an independent, self-funded organization mandated to oversee the safe installation and operation of technical systems and equipment.

Neuron, Coates McCall et al.: “Owning Ethical Innovation: Claims about Commercial Wearable Brain Technologies” https://www.cell.com/neuron/fulltext/S0896-6273(19)30289-2

Two studies show that animals’ brain activity ‘syncs’ during social interactions

Source: Cell Press
Date: 06/20/2019
Link to original
Image of article

Two papers publishing June 20 in the journal Cell show that Egyptian fruit bats and mice, respectively, can “sync” brainwaves in social situations. The synchronization of neural activity in the brains of human conversation partners has been shown previously, as a result of one person picking up social cues from the other and modulating their own behavior based on those cues. These studies now suggest that something similar occurs when animals engage in natural social interactions and find that some aspects of the animals’ social behavior can be predicted based on neural observations.

“Animal models are really important for being able to study brain phenomena at levels that we can’t normally access in humans,” says Michael Yartsev of the Department of Bioengineering at the University of California, Berkeley, and senior author of one of the papers. “Because bats are extremely social and naturally live in highly complex social environments, they are a great model for tackling important scientific questions about social behavior and the neural mechanisms underlying it.”

“If you think of the brain like a black box that receives input and gives some kind of output in response, studying social interactions is like trying to understand how the output of one box provides input to another, and how those two boxes work together and create a loop,” says Weizhe Hong of the Departments of Biological Chemistry and Neurobiology at the University of California, Los Angeles, and senior author of the other paper. “Our research in mice allows us to peer inside these black boxes and get a better look at the internal machinery.”

Previous studies showing how neural activity in humans becomes synchronized during social interactions have used technologies like fMRI and EEG, which look at brain activity with relatively coarse spatial and temporal resolutions. These studies found that when two people interact, structures in their brain simultaneously decode and respond to signals from the other person.

Because the new studies looked at neural activity at a level of detail that is difficult to obtain in humans, they could explore the detailed neural mechanism underlying this phenomenon.

The Berkeley team monitored the bats for sessions of about 100 minutes each as they engaged in a wide range of natural social interactions, such as grooming, mating, and fighting. The bats were filmed with high-speed cameras, and their specific behaviors and interactions were carefully characterized.

As this was happening, the scientists were using a technology called wireless electrophysiology to simultaneously record the brain activity in the bats’ frontal cortices across a wide range of neural signals, ranging from brain oscillations to individual neurons and local neural populations. They saw that the brains of different bats became highly correlated and that this correlation was most pronounced in the high-frequency range of brain oscillations. Furthermore, the correlation between the brains of individual bats extended across multiple timescales of social interactions, ranging from seconds to hours. Remarkably, by looking at the level of correlation, they could predict whether the bats would initiate social interactions or not.

The UCLA team took a different tack. They used a device called a miniaturized microendoscope to monitor the brain activities of mice during social situations. These tiny devices, which weigh only two grams, are fitted on the mice and allow the researchers to monitor the activity of hundreds of neurons at the same time in both animals. They saw that mice also exhibit interbrain correlations in natural social interactions where animals freely interact with each other. Moreover, the access to thousands of individual neurons gave them an unprecedented view of both animals’ decision-making processes and revealed that interbrain correlation emerges from different sets of neurons that encode one’s own behavior and behavior of the social partner.

Social interactions are often nested within the context of a dominance hierarchy. By imaging two mice in a competitive social interaction, they discovered that behavior of the dominant animal drives synchrony more strongly than behavior of the subordinate animal. Remarkably, they also found that the level of correlation between two brains predicts how mice will respond to each other’s behavior as well as the dominance relationships that develop between them.

“Natural social interactions are complex,” says Wujie Zhang, a postdoctoral researcher in Yartsev’s lab and first author of the fruit bat paper. “It is important to embrace this complexity in order to understand real-life social interactions at the neural level.”

“We know that social interactions are altered in many mental diseases in human, including autism spectrum disorders and schizophrenia,” says Lyle Kingsbury, a graduate student in Hong’s lab and first author of the mouse paper. “Developing a genetically tractable model system opens up the possibility of exploring how interbrain synchrony is disrupted in people with these conditions and may provide novel information about possible interventions.”

###

Cell, Zhang and Yartsev: “Correlated Neural Activity Across the Brains of Socially Interacting Bats.” https://www.cell.com/cell/fulltext/S0092-8674(19)30551-3 DOI: 10.1016/j.cell.2019.05.023

This research was supported by the National Institutes of Health, the New York Stem Cell Foundation, the Packard Fellowship, the Klingenstein-Simons Fellowship, the Pew Charitable Trust, and the Dana Foundation.

Cell, Kingsbury et al: “Correlated Neural Activity and Encoding of Behavior Across Brains of Socially Interacting Animals.” https://www.cell.com/cell/fulltext/S0092-8674(19)30550-1 DOI: 10.1016/j.cell.2019.05.022

Study Reveals a New Way That Stress and Aging Lead to Alzheimer’s

Source: Memorial Sloan Kettering - On Cancer
Date: 01/16/2020
Link to original
Image of article

The body is presented with stressors throughout life. These stressors include genetic and environmental challenges that accumulate over time and damage cells, circuits, and organs. This can lead to a wide variety of maladies, including cancer and age-related brain disorders.

Sloan Kettering Institute scientist Gabriela Chiosis and her colleagues study the effects of stressors on proteins and the networks they make up in cells. In a new study published in Nature Communications, her team discovered how stress rewires key connections in the brain. These changes lead to malfunctions associated with Alzheimer’s disease. In addition, they demonstrated how a drug that’s currently being tested in clinical trials for Alzheimer’s, called PU-AD, may correct faulty wiring and preserve brain functions. In lab mice, the drug rewired circuitry within the hippocampus, the part of the brain associated with memory. The result was improved memory without any side effects.

“This study is the culmination of years of research in my lab,” Dr. Chiosis says. “It’s a paradigm-shifting way to think about Alzheimer’s.”

Identifying Common Factors in Cancer Biology and Alzheimer’s Disease for Therapeutics

In 2016, Dr. Chiosis led a study showing that in cancer cells, proteins called chaperones band together in response to stressors associated with cancer and form faulty networks. She named this faulty network of chaperones the epichaperome.

As their name implies, chaperone proteins take care of our cells. They help proteins get made and ensure that cellular activities are coordinated properly. The epichaperome, on the other hand, changes how proteins interact with one another. It causes them to improperly organize inside cells and accelerates the course of disease.

An experimental drug developed at MSK called PU-H71 targets these faulty epichaperomes when they form in cancer. Dr. Chiosis’s 2016 study found that the effectiveness of PU-H71 on tumors depends on how many chaperones have banded into epichaperomes: The more the chaperones have switched to become epichaperomes, the more effective PU-H71 was.

Looking for Epichaperomes in Alzheimer’s Disease

In the new study, Dr. Chiosis and her team analyzed brain tissue from people with Alzheimer’s disease. They compared these to tissues from people of the same age without Alzheimer’s. Higher numbers of chaperones banded into epichaperomes in brain tissue from people with Alzheimer’s compared with healthy brain tissue. These findings were validated in multiple mouse and cellular models of Alzheimer’s disease.

Alzheimer’s is a progressive neurodegenerative disease with complex causes. Many stressors can contribute to it, including diabetes, stroke, high blood pressure, and traumatic brain injury. Genetic risk factors and other age-related changes can also damage brain circuitry over decades. “We decided to look at whether this complex matrix of stressors that change the brain is related to epichaperome formation,” Dr. Chiosis says.

This turned out to be the case. Her team found that in the Alzheimer’s brain tissue, epichaperomes assisted the incorrect organization of many proteins required for normal brain function, including memory and higher-order executive function. Faulty disorganization of memory-related proteins seemed to cascade into defective communication between neurons. That disruption ultimately led to brain dysfunction.

“These changes were similar to network failures seen in electrical or mechanical components that eventually lead to system failure and shutdown,” explains Dr. Chiosis, a member of SKI’s Chemical Biology Program. “The epichaperome acts like a scaffold that allows the misconnectivity of proteins, and in turn, neuronal circuits collapse and underlie age-related cognitive dysfunction.”

Based on their discoveries, Dr. Chiosis and her colleagues, including neuroscientists at Weill Cornell Medicine, the New York University School of Medicine, and the Nathan Kline Institute for Psychiatric Research, developed a term to describe this phenomenon: protein connectivity–based dysfunction (PCBD). “Many people who study Alzheimer’s are thinking about circuits in the brain. But there’s no clear understanding of how stressors due to aging and the environment change the way proteins interact,” she says. “Our research demonstrates that epichaperome formation rewires brain circuitry in Alzheimer’s by enabling proteins to misconnect, leading to downstream PCBD and cognitive decline.”

Validating Findings in Animal Models of Disease

Armed with this knowledge about epichaperomes, Dr. Chiosis and her team treated a mouse model of Alzheimer’s with PU-AD. Like PU-H71 in cancer, PU-AD uncouples the faulty protein networks created by epichaperomes. They found that PU-AD corrected how proteins interacted in the mice. The drug was able to fix signaling problems between neurons. The treated brains resembled those of normal mice.

Further research showed that after Alzheimer’s mice were given PU-AD, they performed much better in tests that evaluate memory function. They also survived longer than mice given a placebo. This indicates that the drug treatment was safe and effective.

The first clinical trial of PU-AD launched in 2019 to confirm in healthy volunteers that the drug is safe. PU-H71 is already in clinical trials for lymphoma, breast cancer, and other cancers. That drug appears to be safe, and researchers are optimistic that the same will hold true for PU-AD. PET imaging versions of both drugs are also being studied in clinical trials as a way to track changes in cells and PCBD in living patients, with the hope that the drug treatment reverses damage in real time.

Summing up the findings in such diverse disorders as cancer and Alzheimer’s disease, Dr. Chiosis says, “Epichaperomes are disease hallmarks that we are just beginning to understand. The idea that we might be able to target this whole network with drugs and treat such complex diseases as cancer and Alzheimer’s is pretty remarkable.”

Researchers stimulate areas vital to consciousness in monkeys’ brains — and it wakes them up

Source: Cell Press
Date: 02/12/2020
Link to original
Image of article

One of the central questions in neuroscience is clarifying where in the brain consciousness, which is the ability to experience internal and external sensations, arises. On February 12 in the journal Neuron, researchers report that a specific area in the brain, the central lateral thalamus, appears to play a key role. In monkeys under anesthesia, stimulating this area was enough to wake the animals and elicit normal waking behaviors.

Previous studies, including EEG and fMRI studies in humans, had suggested that certain areas of the brain, including the parietal cortex and the thalamus, appear to be involved in consciousness. “We decided to go beyond the classical approach of recording from one area at a time,” says senior author Yuri Saalmann, an assistant professor at the University of Wisconsin, Madison. “We recorded from multiple areas at the same time to see how the entire network behaves.”

The investigators used macaques as their animal model. By studying awake, sleeping, and anesthetized animals, they were able to narrow down the region of the brain involved in consciousness to a much more specific area than other studies have done. They were also able to rule out some areas that had been proposed in previous neurocorrelative studies of consciousness. They ultimately focused on the central lateral thalamus, which is found deep in the forebrain.

Once the researchers pinpointed this area, they tested what happened when the central lateral thalamus was activated while the animals were under anesthesia, stimulating the region with a frequency of 50 Hz. “We found that when we stimulated this tiny little brain area, we could wake the animals up and reinstate all the neural activity that you’d normally see in the cortex during wakefulness,” Saalmann says. “They acted just as they would if they were awake. When we switched off the stimulation, the animals went straight back to being unconscious.”

One test of wakefulness was their neural responses to oddball auditory stimulation–a series of beeps interspersed with other random sounds. The animals responded in the same way that awake animals would respond.

“Our electrodes have a very different design,” Saalmann says. “They are much more tailored to the shape of the structure in the brain we want to stimulate. They also more closely mimic the electrical activity that’s seen in a healthy, normal system.”

“The overriding motivation of this research is to help people with disorders of consciousness to live better lives,” says first author Michelle Redinbaugh, a graduate student in the Department of Psychology at the University of Wisconsin, Madison. “We have to start by understanding the minimum mechanism that is necessary or sufficient for consciousness, so that the correct part of the brain can be targeted clinically.”

“There are many exciting implications for this work,” she says. “It’s possible we may be able to use these kinds of deep-brain stimulating electrodes to bring people out of comas. Our findings may also be useful for developing new ways to monitor patients under clinical anesthesia, to make sure they are safely unconscious.”

###

This study was funded by the National Institutes of Health, a United States-Israel Binational Science Foundation, and a Wisconsin National Primate Research Center pilot grant.

Neuron, Redinbaugh et al.: “Thalamus modulates consciousness via layer-specific control of cortex

Brain mapping study suggests motor regions for the hand also connect to the entire body

Source: Cell Press
Date: 03/26/2020
Link to original
Image of article

Mapping different parts of the brain and determining how they correspond to thoughts, actions, and other neural functions is a central area of inquiry in neuroscience, but while previous studies using fMRI scans and EEG have allowed researchers to rough out brain areas connected with different types of neural activities, they have not allowed for mapping the activity of individual neurons.

Now in a paper publishing March 26 in the journal Cell, investigators report that they have used microelectrode arrays implanted in the brains of two people to map out motor functions down to the level of the single nerve cell. The study revealed that an area believed to control only one body part actually operates across a wide range of motor functions. It also demonstrated how different neurons coordinate with each other.

“This research shows for the first time that an area of the brain previously thought to be connected only to the arm and hand has information about the entire body,” says first author Frank Willett, a postdoctoral fellow in the Neural Prosthetics Translational Laboratory at Stanford University and the Howard Hughes Medical Institute. “We also found that this area has a shared neural code that links all the body parts together.”

The study, a collaboration between neuroscientists at Stanford and Brown University, is part of BrainGate2, a multisite pilot clinical trial focused on developing and testing medical devices to restore communication and independence in people affected by neurological conditions like paralysis and locked-in syndrome. A major focus of the Stanford team has been developing ways to restore the ability of these people to communicate through brain-computer interfaces (BCIs).

The new study involved two participants who have chronic tetraplegia–partial or total loss of function in all four limbs. One of them has a high-level spinal cord injury and the other has amyotrophic lateral sclerosis. Both have electrodes implanted in the so-called hand knob area of the motor cortex of their brains. This area–named in part for its knoblike shape–was previously thought to control movement in the hands and arms only.

The investigators used the electrodes to measure the action potentials in single neurons when the participants were asked to attempt to do certain tasks–for example, lifting a finger or turning an ankle. The researchers looked at how the microarrays in the brain were activated. They were surprised to find that the hand knob area was activated not only by movements in the hand and arm, but also in the leg, face, and other parts of the body.

“Another thing we looked at in this study was matching movements of the arms and legs,” Willett says, “for example, moving your wrist up or moving your ankle up. We would have expected the resulting patterns of neural activity in motor cortex to be different, because they are a completely different set of muscles. We actually found that they were much more similar than we would have expected.” These findings reveal an unexpected link between all four limbs in motor cortex that might help the brain to transfer skills learned with one limb to another one.

Willett says that the new findings have important implications for the development of BCIs to help people who are paralyzed to move again. “We used to think that to control different parts of the body, we would need to put implants in many areas spread out across the brain,” he notes. “It’s exciting, because now we can explore controlling movements throughout the whole body with an implant in only one area.”

One important potential application for BCIs is allowing people who are paralyzed or have locked-in syndrome to communicate by controlling a computer mouse or other device. “It may be that we can connect different body movements to different types of computer clicks,” Willett says. “We hope we can leverage these different signals more accurately to enable someone who can’t talk to use a computer, since neural signals from different body parts are easier for a BCI to tease apart than those from the arm or hand alone.”

###

This work was supported by the Office of Research and Development, Rehabilitation R and D Service, Department of Veterans Affairs, the Executive Committee on Research of Massachusetts General Hospital, NIDCD, NINDS, Larry and Pamela Garlick, Samuel and Betsy Reeves, the Wu Tsai Neuroscience Institute at Stanford, the Simons Foundation Collaboration on the Global Brain, the Office of Naval Research, and the Howard Hughes Medical Institute.

Cell, Willett et al. “Hand Knob Area of Premotor Cortex Represents the Whole Body in a Compositional Way” https://www.cell.com/cell/fulltext/S0092-8674(20)30220-8

Revisiting the potential of using psychedelic drugs in psychiatry

Source: Cell Press
Date: 04/02/2020
Link to original
Image of article

Before they were banned about a half century ago, psychedelic drugs like LSD and psilocybin showed promise for treating conditions including alcoholism and some psychiatric disorders. In a commentary publishing April 2 in the journal Cell, part of a special issue on medicine, researchers say it’s time for regulators, scientists, and the public to “revisit drugs that were once used but fell out of use because of political machinations, especially the war on drugs.”

Brain imaging over the past 20 years has taught scientists a lot about how these drugs act on different areas of the brain, says first author David Nutt (@ProfDavidNutt), a professor and neuropharmacologist at Imperial College London. “There’s mechanistic evidence in humans of how these drugs affect the brain,” he says. “By back-translating from humans to rodent models, we can see how these drugs produce the powerful neuroplastic changes that explain the long-term alterations we see in humans.”

Nutt is a prominent proponent of conducting controlled trials to examine the potential benefits of psychedelics. He is also chair of the scientific advisory board for COMPASS Pathways, a for-profit company that is leading clinical research to test the safety and efficacy of psilocybin-assisted therapy for treatment-resistant depression. The treatment has been granted breakthrough therapy designation from the US Food and Drug Administration. The group also plans to launch a similar study for obsessive-compulsive disorder.

In the Cell commentary, Nutt and his colleagues write about the “psychedelic revolution in psychiatry.” They explore specific questions in research, including what is known about the receptors in the brain affected by these drugs and how stimulating them might alter mental health. They also address what’s been learned so far about so-called microdosing, the value of the psychedelic “trip,” and what researchers know about why the effects of these trips are so long-lasting.

Brain imaging has shown that the activity of psychedelic drugs is mediated through a receptor in brain cells called 5-HT2A. There is a high density of these receptors in the “thinking parts of the brain,” Nutt explains.

The key part of the brain that appears to be disrupted by the use of psychedelics is the default mode network. This area is active during thought processes like daydreaming, recalling memories, and thinking about the future–when the mind is wandering, essentially. It’s also an area that is overactive in people with disorders like depression and anxiety. Psychedelics appear to have long-term effects on the brain by activating 5-HT2A receptors in this part of the brain. More research is needed to understand why these effects last so long, both from a psychological perspective and in terms of altered brain functioning and anatomy.

The authors note the challenges in obtaining materials and funding for this type of research. “Before LSD was banned, the US NIH funded over 130 studies exploring its clinical utility,” they write. “Since the ban, it has funded none.”

Nutt highlights the early potential of psychedelic drugs for treating alcoholism, which the World Health Organization estimates to be the cause of about one in 20 deaths worldwide every year. “If we changed the regulations, we would have an explosion in this kind of research,” Nutt says. “An enormous opportunity has been lost, and we want to resurrect it. It’s an outrageous insult to humanity that these drugs were abandoned for research just to stop people from having fun with them. The sooner we get these drugs into proper clinical evaluation, the sooner we will know how best to use them and be able to save lives.”

###

The Beckley Foundation and the Alexander Mosley Charitable Trust supported much of the imaging and clinical work respectively. This research is also funded by the UK Medical Research Council. David Nutt is a scientific advisor to COMPASS Pathways. Co-author Robin Carhart-Harris is a scientific advisor to COMPASS Pathways and USONA.

Cell, Nutt et al. “Psychedelic psychiatry’s brave new world” https://www.cell.com/cell/fulltext/S0092-8674(20)30282-8

Researchers restore injured man’s sense of touch using brain-computer interface technology

Source: Cell Press
Date: 04/23/2020
Link to original
Image of article

While we might often take our sense of touch for granted, for researchers developing technologies to restore limb function in people paralyzed due to spinal cord injury or disease, re-establishing the sense of touch is an essential part of the process. And on April 23 in the journal Cell, a team of researchers at Battelle and the Ohio State University Wexner Medical Center report that they have been able to restore sensation to the hand of a research participant with a severe spinal cord injury using a brain-computer interface (BCI) system. The technology harnesses neural signals that are so miniscule they can’t be perceived and enhances them via artificial sensory feedback sent back to the participant, resulting in greatly enriched motor function.

“We’re taking subperceptual touch events and boosting them into conscious perception,” says first author Patrick Ganzer, a principal research scientist at Battelle. “When we did this, we saw several functional improvements. It was a big eureka moment when we first restored the participant’s sense of touch.”

The participant in this study is Ian Burkhart, a 28-year-old man who suffered a spinal cord injury during a diving accident in 2010. Since 2014, Burkhart has been working with investigators on a project called NeuroLife that aims to restore function to his right arm. The device they have developed works through a system of electrodes on his skin and a small computer chip implanted in his motor cortex. This setup, which uses wires to route movement signals from the brain to the muscles, bypassing his spinal cord injury, gives Burkhart enough control over his arm and hand to lift a coffee mug, swipe a credit card, and play Guitar Hero.

“Until now, at times Ian has felt like his hand was foreign due to lack of sensory feedback,” Ganzer says. “He also has trouble with controlling his hand unless he is watching his movements closely. This requires a lot of concentration and makes simple multitasking like drinking a soda while watching TV almost impossible.”

The investigators found that although Burkhart had almost no sensation in his hand, when they stimulated his skin, a neural signal–so small it was his brain was unable to perceive it–was still getting to his brain. Ganzer explains that even in people like Burkhart who have what is considered a “clinically complete” spinal cord injury, there are almost always a few wisps of nerve fiber that remain intact. The Cell paper explains how they were able to boost these signals to the level where the brain would respond.

The subperceptual touch signals were artificially sent back to Burkhart using haptic feedback. Common examples of haptic feedback are the vibration from a mobile phone or game controller that lets the user feel that something is working. The new system allows the subperceptual touch signals coming from Burkhart’s skin to travel back to his brain through artificial haptic feedback that he can perceive.

The advances in the BCI system led to three important improvements. They enable Burkhart to reliably detect something by touch alone: in the future, this may be used to find and pick up an object without being able to see it. The system also is the first BCI that allows for restoration of movement and touch at once, and this ability to experience enhanced touch during movement gives him a greater sense of control and lets him to do things more quickly. Finally, these improvements allow the BCI system to sense how much pressure to use when handling an object or picking something up–for example, using a light touch when picking up a fragile object like a Styrofoam cup but a firmer grip when picking up something heavy.

The investigators’ long-term goal is to develop a BCI system that works as well in the home as it does in the laboratory. They are working on creating a next-generation sleeve containing the required electrodes and sensors that could be easily put on and taken off. They also aim to develop a system that can be controlled with a tablet rather than a computer, making it smaller and more portable.

“It has been amazing to see the possibilities of sensory information coming from a device that was originally created to only allow me to control my hand in a one-way direction,” Burkhart says.

###

This study was supported by Battelle Memorial Institute and The Ohio State University Center for Neuromodulation.

Cell, Ganzer et al.: “Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface” https://www.cell.com/cell/fulltext/S0092-8674(20)30347-0

Dynamic stimulation of the visual cortex allows blind and sighted people to ‘see’ shapes

Source: Cell Press
Date: 05/14/2020
Link to original
Image of article

For most adults who lose their vision, blindness results from damage to the eyes or optic nerve while the brain remains intact. For decades, researchers have proposed developing a device that could restore sight by bypassing damaged eyes and delivering visual information from a camera directly to the brain. In a paper publishing in the journal Cell on May 14, a team of investigators at Baylor College of Medicine in Houston report that they are one step closer to this goal. They describe an approach in which implanted electrodes are stimulated in a dynamic sequence, essentially “tracing” shapes on the surface of the visual cortex that participants were able to “see.”

“When we used electrical stimulation to dynamically trace letters directly on patients’ brains, they were able to ‘see’ the intended letter shapes and could correctly identify different letters,” senior author Daniel Yoshor says. “They described seeing glowing spots or lines forming the letters, like skywriting.”

Previous attempts to stimulate the visual cortex have been less successful. Earlier methods treated each electrode like a pixel in a visual display, stimulating many of them at the same time. Participants could detect spots of light but found it hard to discern visual objects or forms. “Rather than trying to build shapes from multiple spots of light, we traced outlines,” says first author Michael Beauchamp. “Our inspiration for this was the idea of tracing a letter in the palm of someone’s hand.”

The investigators tested the approach in four sighted people who had electrodes implanted in their brains to monitor epilepsy and two blind people who had electrodes implanted over their visual cortex as part of a study of a visual cortical prosthetic device. Stimulation of multiple electrodes in sequences produced perceptions of shapes that subjects were able to correctly identify as specific letters.

The approach, the researchers say, demonstrates that it could be possible for blind people to regain the ability to detect and recognize visual forms by using technology that inputs visual information directly into the brain, should they wish to. The researchers note, however, that several obstacles must be overcome before this technology could be implemented in clinical practice.

“The primary visual cortex, where the electrodes were implanted, contains half a billion neurons. In this study we stimulated only a small fraction of these neurons with a handful of electrodes,” Beauchamp says. “An important next step will be to work with neuroengineers to develop electrode arrays with thousands of electrodes, allowing us to stimulate more precisely. Together with new hardware, improved stimulation algorithms will help realize the dream of delivering useful visual information to blind people.”

###

This work was supported by the National Institutes of Health.

Cell, Beauchamp et al.: “Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans” https://www.cell.com/cell/fulltext/S0092-8674(20)30496-7

Inactivity in obese mice linked to a decreased motivation to move

Source: Cell Press
Date: 12/29/16
Link to original
Image of article

Starting a regular program at the gym is a common New Year’s resolution, but it’s one that most people are unable to stick with for very long. Now a study done in mice is providing clues about one of the reasons why it may be hard for so many people to stick with an exercise program. The investigators found that in obese mice, physical inactivity results from altered dopamine receptors rather than excess body weight. The report appears in Cell Metabolism on December 29.

“We know that physical activity is linked to overall good health, but not much is known about why people or animals with obesity are less active,” says the study’s senior author Alexxai V. Kravitz, an investigator in the Diabetes, Endocrinology, and Obesity Branch at the National Institute of Diabetes and Digestive and Kidney Diseases–part of the National Institutes of Health. “There’s a common belief that obese animals don’t move as much because carrying extra body weight is physically disabling. But our findings suggest that assumption doesn’t explain the whole story.”

Kravitz has a background in studying Parkinson’s disease, and when he began conducting obesity research a few years ago, he was struck by similarities in behavior between obese mice and Parkinsonian mice. Based on that observation, he hypothesized that the reason the mice were inactive was due to dysfunction in their dopamine systems.

“Other studies have connected dopamine signaling defects to obesity, but most of them have looked at reward processing–how animals feel when they eat different foods,” Kravitz says. “We looked at something simpler: dopamine is critical for movement, and obesity is associated with a lack of movement. Can problems with dopamine signaling alone explain the inactivity?”

In the study, mice were fed either a standard or a high-fat diet for 18 weeks. Beginning in the second week, the mice on the unhealthy diet had higher body weight. By the fourth week, these mice spent less time moving and got around much more slowly when they did move. Surprisingly, the mice on high-fat diet moved less before they gained the majority of the weight, suggesting that the excess weight alone was not responsible for the reduced movements.

The investigators looked at six different components in the dopamine signaling pathway and found that the obese, inactive mice had deficits in the D2 dopamine receptor. “There are probably other factors involved as well, but the deficit in D2 is sufficient to explain the lack of activity,” says Danielle Friend, first author and former NIDDK postdoctoral fellow.

The team also studied the connection between inactivity and weight gain, to determine if it was causative. By studying lean mice that were engineered to have the same defect in the D2 receptor, they found that those mice did not gain weight more readily on a high-fat diet, despite their lack of inactivity, suggesting that weight gain was compounded once the mice start moving less.

“In many cases, willpower is invoked as a way to modify behavior,” Kravitz says. “But if we don’t understand the underlying physical basis for that behavior, it’s difficult to say that willpower alone can solve it.”

He adds that if we begin to decipher the physiological causes for why people with obesity are less active, it may also help reduce some of the stigma that they face. Future research will focus on how unhealthy eating affects dopamine signaling. The researchers also plan to look at how quickly the mice recover to normal activity levels once they begin eating a healthy diet and losing weight.

Transplanted interneurons can help reduce fear in mice

Source: Cell Press
Date: 12/08/16
Link to original
Image of article

The expression “once bitten, twice shy” is an illustration of how a bad experience can induce fear and caution. How to effectively reduce the memory of aversive events is a fundamental question in neuroscience. Scientists in China are reporting that by transplanting mouse embryonic interneurons into the brains of mice and combining that procedure with training to lessen fear, they can help to reduce the fear response. The study is being published December 8 in Neuron.

“Anxiety and fear-related disorders such as post-traumatic stress disorder [PTSD] cause great suffering and impose high costs to society,” says Yong-Chun Yu, a professor at the Institutes of Brain Science at Fudan University in Shanghai and the study’s senior author. “Pharmacological and behavioral treatments of PTSD can reduce symptoms, but many people tend to relapse. There’s a pressing need for new strategies to treat these refractory cases.”

In the study, the researchers used traditional conditioning to instill fear in the mice. They exposed them to a sound as a neutral stimulus, followed by a mild shock to the foot. To determine the level of fear, they measured the amount of time the mice exhibited freezing behavior–the natural sympathetic fear response in prey animals that is indicated by crouching. They then conducted fear extinction training, in which the mice were exposed to the sound but not the shock. After a few rounds, the freezing response times were significantly reduced.

To determine the contribution that transplanting immature interneurons into the amygdala–a brain structure known to be involved in processing of fear and other emotions–could have on fear extinction training, they inserted medial ganglionic eminence (MGE) cells taken from embryos into the amygdala regions of mature mice. The transplanted cells were labeled with green fluorescent protein, enabling the researchers to experimentally confirm that the new cells were integrating into the brains’ circuits.

“We found that although the transplanted interneurons did not alter the formation of fear memories, they reduced recovery and renewal of fear after extinction training,” Yu says. However, transplantation of the neurons alone was not enough to reduce fear memories, indicating that the MGE cells were boosting the effectiveness of that training.

“Unexpectedly, we observed that the erasure of fear memory is facilitated only by transplanted immature interneurons–two weeks after transplantation,” he adds. “Previous studies had indicated that transplanted MGE cells induce plasticity when they are relatively mature–four weeks after transplantation.”

Further studies indicated that the transplanted immature interneurons reactivated a juvenile-like plasticity in the mature amygdala. “Likely related to the changes in the expression of perineuronal nets (PNNs), which are responsible for synaptic stabilization, we found that transplanted immature neurons enhance synaptic plasticity in the amygdala’s circuits by disrupting PNNs, converting the amygdala to a juvenile stage,” Yu says.

Additional experiments are required to determine how these transplanted immature interneurons rejuvenate the mature circuits. “We still don’t know the mechanism by which these immature neurons modulate the fear extinction behavior in the mice,” he concludes. “We also need to determine the exact subtype of transplanted interneurons and the exact subregion in the amygdala that are responsible for these behavioral effects.”